3.1 Meiosis

In multicellular creatures there are 2 main types of cells: \qquad cells and
\qquad cells
cell: cells that contain the full amount of chromosomes (\qquad These are also called body cells
\qquad cells: cells that contain half the amount of chromosomes (\qquad

These are also called \qquad . Male \qquad are called
\qquad and female \qquad are called \qquad _.

The process of making new \qquad cells is mitosis. But making
\qquad is a little different, mainly because you need the newly made cells to have \qquad the number of chromosomes as the original. The process of making gametes is called \qquad .

Remember: the "full amount" of chromosomes in an organism can be represented by "____" while half the number of chromosomes is "____"
$2 \mathrm{n}=$ \qquad cells $=$ \qquad cells
$\mathrm{n}=$ \qquad cells = \qquad

Remember that you get two versions of each chromosome: one from your mom and one from your dad. Each of these are called \qquad chromosomes.

Do not confuse \qquad with \qquad
_ = exact copies of each other
genetically identical $=$ two different versions of the same traits. Not genetically identical

The goal of mitosis: \qquad

The goal of meiosis: \qquad
Meiosis acts in a similar way to mitosis. However, meiosis has two "cycles" to it.
Prophase I, Metaphase I, Anaphase I, and Telophase I
Then there is a second round of divisions
Prophase II, Metaphase II, Anaphase II, and Telophase II

Note: \qquad takes place after Telophase I and after Telophase II

The reason this works is because DNA is \qquad between meiosis I and meiosis II.

At the end of meiosis II you have a total of \qquad new cells, but each cell has only the number of chromosomes that the parent cell had.

